Pricing

Predictive Filtering

Predictive Filtering is powered by a Synerise AI model that uses historical search behavior, click data, and indexing structure to calculate category relevance on the fly.

Predictive Filtering is a brand-new AI feature in Synerise Search, designed to significantly improve how search results are filtered and displayed—without relying on dozens of manual query rules.

This feature uses a predictive model to assign the most relevant category to each search query. That means when someone types "shoes", the system can narrow results automatically to “sports shoes”, based on behavioral data and patterns.

What you’ll see

For every prediction in addition, you’ll get:

  • Reliability levels: How trustworthy the prediction is (low, medium, high)
  • An option to adjust, or exclude phrases or categories as needed
  • A preview options where you can see the live effects  

Why it matters

1. Reduces complexity

Predictive Filtering significantly reduces the need for manually configuring complex query rules for each search term.

2. Improves precision

The model narrows down results based on real-world user behavior, reducing noise and making the search experience more accurate. This leads to higher engagement and better conversion in commerce use cases.

3. Saves time

Teams no longer need to define and maintain many category-matching rules. Automated prediction allows for faster deployment of new indices and continuous improvements without deep manual tuning.

Predictive Filtering is powered by a Synerise AI model that uses historical search behavior, click data, and indexing structure to calculate category relevance on the fly. Each query is evaluated in context, and predictions can be adapted based on filter types—stricter logic for static filters, looser thresholds for flexible filters. This approach is especially effective in large catalogs with many overlapping or ambiguous terms, helping improve search relevance and make Synerise AI Search more scalable in enterprise environments.

Use Cases

We’ve expanded our use case catalog with new, real-world scenarios! 🚀 Built on insights from our customers and powered by the latest features in our platform, these use cases are designed to help you unlock even more value.
Search

Predictive Filtering

Predictive Filtering is powered by a Synerise AI model that uses historical search behavior, click data, and indexing structure to calculate category relevance on the fly.

Predictive Filtering is a brand-new AI feature in Synerise Search, designed to significantly improve how search results are filtered and displayed—without relying on dozens of manual query rules.

This feature uses a predictive model to assign the most relevant category to each search query. That means when someone types "shoes", the system can narrow results automatically to “sports shoes”, based on behavioral data and patterns.

What you’ll see

For every prediction in addition, you’ll get:

  • Reliability levels: How trustworthy the prediction is (low, medium, high)
  • An option to adjust, or exclude phrases or categories as needed
  • A preview options where you can see the live effects  

Why it matters

1. Reduces complexity

Predictive Filtering significantly reduces the need for manually configuring complex query rules for each search term.

2. Improves precision

The model narrows down results based on real-world user behavior, reducing noise and making the search experience more accurate. This leads to higher engagement and better conversion in commerce use cases.

3. Saves time

Teams no longer need to define and maintain many category-matching rules. Automated prediction allows for faster deployment of new indices and continuous improvements without deep manual tuning.

Predictive Filtering is powered by a Synerise AI model that uses historical search behavior, click data, and indexing structure to calculate category relevance on the fly. Each query is evaluated in context, and predictions can be adapted based on filter types—stricter logic for static filters, looser thresholds for flexible filters. This approach is especially effective in large catalogs with many overlapping or ambiguous terms, helping improve search relevance and make Synerise AI Search more scalable in enterprise environments.

Boletín sobre productos
Mantente al día de las últimas actualizaciones de los productos de Synerise, las nuevas funciones y la información práctica, directamente en tu bandeja de entrada. ¡Solo tienes que suscribirte a nuestro boletín semanal!
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Ventajas principales

Explora las ventajas principales de esta función y descubre el valor que aporta a tu trabajo diario con Synerise.

Optimización más rápida

Permite un ajuste de búsqueda más rápido con menos esfuerzo

Menos trabajo manual

Reduce la necesidad de crear y mantener reglas de consulta complejas

Mejor relevancia

Ofrece resultados más precisos al predecir la categoría correcta. Hasta un 7 % más de CTR

Use Cases

Explore real-life use cases that demonstrate how to apply this feature in practice through inspiring, ready-to-use scenarios that solve real challenges.
No items found.

Comparte tu opinión con nosotros

¿Quieres compartir tus opiniones o tienes alguna pregunta sobre este artículo?
Déjanos un mensaje, ¡nos encantaría conocer tus sugerencias!
Synerise es el responsable del tratamiento de tus datos personales con el fin de satisfacer tu solicitud especificada en este formulario. Puedes retirar tu consentimiento en cualquier momento poniéndote en contacto con nosotros. Para obtener más información sobre cómo tratamos tus datos personales y cuáles son tus derechos, consulta nuestra política de privacidad.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.