Pricing

Dynamic Conditions in Data Transformation

Sometimes, one-size-fits-all just doesn’t cut it. That’s why we introduced Dynamic Conditions — so your transformations can adapt based on the data that’s coming in. More flexibility, less manual work.

You know how tricky it can get when you’re working with data from multiple sources — different formats, conditions, or exceptions that force you to duplicate logic or build messy workarounds? We’ve been there too.

That’s why we introduced Dynamic Conditions in Data Transformation.

How this feature works

Dynamic Conditions let you define rules that determine which input columns should be transformed, and when.

These conditions are fully customizable and based on the logic you configure — so your transformations can respond intelligently to variations in data.

For example, you can now:

  • Transform revenue values only if the currency is USD
  • Dynamically adjust processing based on data format or source
  • Keep pipelines lean by avoiding duplicated logic across steps

All of this is done within one transformation node, making complex workflows easier to build and manage.

It’s all about giving you more control, more precision, and way less clutter when designing complex workflows. One node, many possibilities — smarter, not harder.

Use Cases

We’ve expanded our use case catalog with new, real-world scenarios! 🚀 Built on insights from our customers and powered by the latest features in our platform, these use cases are designed to help you unlock even more value.
Automation

Dynamic Conditions in Data Transformation

Sometimes, one-size-fits-all just doesn’t cut it. That’s why we introduced Dynamic Conditions — so your transformations can adapt based on the data that’s coming in. More flexibility, less manual work.

You know how tricky it can get when you’re working with data from multiple sources — different formats, conditions, or exceptions that force you to duplicate logic or build messy workarounds? We’ve been there too.

That’s why we introduced Dynamic Conditions in Data Transformation.

How this feature works

Dynamic Conditions let you define rules that determine which input columns should be transformed, and when.

These conditions are fully customizable and based on the logic you configure — so your transformations can respond intelligently to variations in data.

For example, you can now:

  • Transform revenue values only if the currency is USD
  • Dynamically adjust processing based on data format or source
  • Keep pipelines lean by avoiding duplicated logic across steps

All of this is done within one transformation node, making complex workflows easier to build and manage.

It’s all about giving you more control, more precision, and way less clutter when designing complex workflows. One node, many possibilities — smarter, not harder.

Boletín sobre productos
Mantente al día de las últimas actualizaciones de los productos de Synerise, las nuevas funciones y la información práctica, directamente en tu bandeja de entrada. ¡Solo tienes que suscribirte a nuestro boletín semanal!
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Ventajas principales

Explora las ventajas principales de esta función y descubre el valor que aporta a tu trabajo diario con Synerise.
No items found.

Use Cases

Explore real-life use cases that demonstrate how to apply this feature in practice through inspiring, ready-to-use scenarios that solve real challenges.
No items found.

Comparte tu opinión con nosotros

¿Quieres compartir tus opiniones o tienes alguna pregunta sobre este artículo?
Déjanos un mensaje, ¡nos encantaría conocer tus sugerencias!
Synerise es el responsable del tratamiento de tus datos personales con el fin de satisfacer tu solicitud especificada en este formulario. Puedes retirar tu consentimiento en cualquier momento poniéndote en contacto con nosotros. Para obtener más información sobre cómo tratamos tus datos personales y cuáles son tus derechos, consulta nuestra política de privacidad.
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.